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Abstract--An analysis is presented for the steady one-dimensional flow behind a normal shock wave of a 
compressible gas containing small spherical particles of solid propellant. The solids mass fraction is 
assumed large enough to require that the void volume fraction be retained as a variable in the governing 
conservation equations. The particles are ignited by the shocked air and by viscous interaction. Propellant 
gases are then generated which depend on the instantaneous size of the particles and on the linear burning 
rate. The latter is assumed dependent upon the local pressure and the particle temperature. These 
calculations are of interest because of the potential hazards of such particle flows, in that extreme pressures 
are predicted within the relaxation zone, pressures even greater than those calculated for the final 
equilibrium conditions. The results stress the importance of the Mach number of the normal {strong shock) 
and the energy content of the propellant (J/kg). 

1. I N T R O D U C T I O N  

The steady flow of suspensions of particles in compressible gases with the possible existence of 

shock waves has been analyzed by previous investigators, generally for inert particles in air. 

The work of Carrier (1958), Rudinger (1964, 1965), Marble (1963), and Kriebel (1964) represent 
the foundation developed in this area. The significant calculation is generally the relaxation 

zone structure and length behind normal shock waves which have generated velocity and 
temperature differences of the particle and gas phases. 

Modifications of the normal shock analysis for a mixture of liquid droplets in the air have 

been carried out by Lu & Chiu (1966), Panton & Oppenheim (1968) and Narkis & Gal-or (1975). 
The majority of all these investigators assumed in their models that the particle (or liquid) 

volume was negligible compared to the volume of the air (gas) stream. Such an assumption 

greatly simplifies the solution to the models, and may even be a necessary requirement to truly 
allow for "strong" shock (two-phase) waves in a laminar flow regime. Excellent reviews on the 

subject of the possibility of "strong" and "weak" (diffusive) shock in two phase mixtures are 
given by Wallis (1969) and Rudinger (1969). 

The work presented here gives the important steps for the analysis of the steady one- 
dimensional flow through a normal shock wave of compressible gases containing solid propel- 

lant. A model is developed for particles assumed to be propellant, which after being ignited in 

the relaxation zone from the heat transferred by the shocked (high temperature) air and viscous 

interaction, begin to burn at rates dependent upon both the local pressure and the particle 

temperature. The solid volume fraction is not assumed to be zero. Each step of the modeling 
procedure is developed with sufficient detail so that the equations in their final form can be 
understood as to their physical importance. 

Previous related work 

Carrier (1958) analyzed the plane steady decelerated flow of gas heavily laden with particles 
by eliminating one of the variables (z, the space-coordinate) between the two lag equations. 
Kriebel (1964) gave an approximate analytical solution for weak shock waves and computer 
results for strong shockg where three particle sizes were present. Almost simultaneously, but 
independently, Rudinger (1%4, 1965) studied the numerical case for solid particles where he 
varied shock strengths, drag coefficients and heat-transfer correlations. He noted that the 
velocities and temperatures did not always change monotonically toward their equilibrium 
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values. Investigators who took into account the mass transfer between the phases were Lu & 
Chiu (1966) and Panton & Oppenheim (1968), who studied the structure of the relaxation zone 
where the particles were liquid droplets, and Narkis & Gal-or (1975). 

More recently Kuo & Summerfieid (1974, 1975) considered the combustion of solid propel- 
lant particles through a discontinuous wave structure. However their work considered only a 
"weak" shock wave structure. That is, the Mach number of the gas is less than unity, but the 
Mach number of the "mixture" is greater than unity. The solids loading (volume fraction) was 
very large, but turbulent fluid interchange was only "accounted" for in the viscous drag (which 
causes the pressure drop) and the heat-transfer coefficient. Also, the initialized stimulus for 
particle ignition is produced by an external source, which unfortunately was not represented in 
any of the equations expressed in both papers by Kuo & Summerfield (1974, 1975). 

The model developed here is applied to both strong and weak shock waves. No external 
source is required to ignite the particles. The jump conditions are derived which determine the 
final fluid properties at the end of the long relaxation zone. The work also shows that the drag 
relations and heat-transfer correlations one assumes can dominate the wave structure and 
prediction of ignition. The application of the work, especially for the strong shock waves, is 
that of predicting a potential hazards problem in particle dust mixtures. Such an extension for 
dust mixtures of a solid fuel (not propellant) would, of course, require a solution to the air and 
fuel vapor species conservation equations as well as the ones shown here. 

2. PROBLEM OF INTEREST AND FORMULATION OF 
GOVERNING EQUATIONS 

In this section the theoretical model of steady state state strong shock wave initiation of 
particulate propellant or explosives is discussed. The assumptions which apply here and the 
required conservation equations which must be satisfied are presented below. 

Initially the two phases are in total equilibrium at some velocity Up = U~ = Vo, temperature 
Tp = T~ = To and pressure Po, where U is the velocity with respect to laboratory coordinates, 
V is the shock wave velocity, subscript p refers to particle properties and g refers to gas 
properties. A strong shock wave with constant velocity Vo propagating through the mixture will 
upset the equilibrium between the two phases. As depicted in figure 1 (for inert particles) in this 
nonequilibrium region the gas and the particle velocities drop whereas the gas temperature rises 
(as a result of friction due to the differences in phase velocities). Particles now find themselves 
in a high temperature surroundings and their temperature rises according to heat transfer laws. 
At a location downstream, the particle temperature reaches its ignition value, Tign. The distance 
between the origin of the coordinate axis, Z, and the location where the particle ignition occurs 

is called, Zcw, combustion front distance. Chemical reaction occurs until the particles burn out, 
i.e. 

Zcw<~Z<-Z~, 

where Z~ is the distance at which particles burn out (i.e. the final equilibrium state where e = I). 

Hence Z~ is the thickness of the relaxation zone. 

Assumptions 
It is assumed that, (a) the gas is treated as a continuum of a generally ideal, perfect gas. At 

high pressures a co-volume correction is inserted into the state equation. (b) The gas alone is 
inviscid except for the interaction with the particles and the dissipation in the discontinuous 
shock front. (c) The particles are assumed to be incompressible; i.e. pp = constant. (d) 
Transport properties of the gas and the particles are appropriate averages and held constant. (e) 
The particles are of spherical shape because of the availability of well established empirical 
heat transfer and drag equations. (f) The particles are uniformly distributed in the gas. (g) The 
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Figure 1. Typical pressure, velocity and temperature variations through a "strong" two-phase flow shock 
wave (inert particles). 

particles have a sufficiently large thermal conductivity relative to the gas so that their internal 
temperature is uniform. This approximation allows the use of one specific temperature to define 
the solid phase. Rudinger (1%9) has presented a discussion regarding the limiting particle size 
and thermal resistance which validates this approximation. (h) Energy exchange between the 
particles and the gas occurs only through convection (i.e. radiation transport has been 
neglected). (i) There are no mass, momentum and energy losses from the system (i.e. the 
mixture). (j) The particles and the gas are in velocity and temperature equilibrium upstream and 
again far downstream of the shock wave. (This, of course, means the shock wave moves into a 
quiescent mixture of uniformly dispersed particles in air.) (k) The body forces, especially 
gravity, are neglected. (1) One dimensional flow is assumed throughout; turbulent flow fluctua- 
tions are neglected. (m) The structure of the shock wave is not affected by the presence of the 
solid phase so that the gas state variables after the shock are found from the classical shock 
wave solutions. (n) The particle temperature is assumed to be constant across the shock wave 
since the thickness of the shock wave is small compared to the particle size. (o) However, 
particle velocity across the shock wave changes somewhat since they receive an impulse. (p) 
The burning rate of the particles is pressure sensitive and also affected by changes in particle 
temperature. A steady-state burning rate equation, assumed known, is used. (q) The propellant 
gases are assumed to be identical to that of air, and they mix instantaneously with the air. 

General conservation equations 
The one-dimensional form of the unsteady conservation equations are expressed below. 

This formulation utilizes the concept of a "separated" two-phase flow, as defined in the text by 
Wallis (1%9). A different form for the mixture or field balance equations arise if one assumes a 
"continuum" two-phase, as defined by Soo (1%7) and used by Krier & Van Tassell (1975). 
However, it can be shown that both concepts are approximately identical when the solids 
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loading, (1 - ~) is near unity, e is the gas void fraction and for cases when the gas and solid velocity 
are of the same order. Thus we express the following: 
Gas continuity: 

a 
a-t (~p~) + ~z (ep~g~) = r~, 

where Fg is the rate of production of gas. 
Particle continuity: 

Mixture momentum: 

a 
0-~ [(1 - e)ppl  + ~ z  [(1 - ~ ) p . U ~ l  = 

[11 

[21 

e~o =- CL, Tg + l/2U~ 2, 

~po =- CvTv + I/2Uv 2+ E/ 

[4a] 

[4b] 

when e~,, is the stagnation energy of the gas, ev,, is the stagnation energy of the solid phase, E~ is 
the energy of reaction. 
Gas equation of state: 

Particle force balance: 

[6 dp3] pp-D~t = CD[4 dpm] llmpg(Ug- Up,,U~- Up[. [6] 

Particle energy balance: 

where N, is the Nusselt number, kg is the gas thermal conductivity, d o is the particle diameter. 
The last term in the R.H.S. of [7] is inserted to account for latent heat of sublimination, h1~, 
which is nonzero only after ignition. 

Conversely one may drop the last term in [7] and instead assume that the Nusselt number 

P~(p~-' - b)= ~T. .  [51 

Hence 

a p  0 a[apgU~+(I-e)pvUp]+a-~-[eP~U**2+(I-a)pvU°ml=--~z at az 8 - ~ z  [(1 - ~)~'p]' [3] 

where % is the particle-particle stress. 
Mixture energy: 

-~[aggego+(1-a)gpep,,]+ [~pgUgo+(1-a) pUpe.o]+~[aPgUg +(1-a)pgug] az 

+ ~z [(1 - ~)~.U~] = O. [41 
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Nu is reduced after burning commences, because of "blowing" into the thermal boundary layer 
around the particle. Of course, the proper Nusselt number variation is actually unknown, and is 

an independent study in itself. 
In order to obtain the steady-state structure of the chemically reacting particle laden shocks, 

the coordinate system is taken to travel at the same velocity as the shock wave. The required 
transformation can simply be, 

[3 - Vot - Z, [8] 

r --- t [9] 

where/3 is the transformed space coordinate, Vo is the speed of propagation wave (constant), r 
is the transformed time coordinate. Hence, one can easily obtain 

vA[3) =- v o -  u,(z) ,  [lO1 

vA[3) =- Vo- uAz ) ,  [11] 

where ve is the gas velocity seen by an observer fixed on shock wave, and vp is the particle 
velocity seen by an observer fixed on shock wave. Neglecting shear forces and particle 
collisions (i.e. % = 0) and all time derivatives, the transformed governing equations [11-[4], [6] 
and [7] will change to six simpler ordinary differential equations; namely, 

Gas continuity: 

d•[epgvg]=rg. [121 

Particle continuity: 

d-~ [(1 - ~)ppvp ] = -r~.  [131 

Mixture momentum: 

Mixture energy: 

d ~  [ ~pgvg2 + (1 - ~ )ppvp z] = - - ~  . [141t 

d . d 
~-~ [ep~,vgG,, + (1 - e)ppvpepo] = - ~-~ [~vgP e + (1 - ~)voPg 1. [151t 

Particle force balance: 

dve 3 C o  'v 
o ~  d~ = ~ P ~ l  g -  ~t(~g - ~), [16] 

when Cp is the dry coefficient. 
Particle energy balance: 

dT~ ~ T , ) -  r,h~,. ppcpvp dfl = 6  dp 2 ( Te - [171 

w h e r e  d o = 2RI,. 

tNote thai [141 and [15] can be integrated immediately and the constants evaluated from the initial conditions. 
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Equations [12]-[17] are expressed in conservation form. In order to solve for each parameter 
explicitly, i.e. in operator form, a great deal of substitution and algebraic manipulations are 
required. Here Fg = 3 ( I -  e)rdRp after the particles have reached their ignition temperature, 
where rb is the burning rate and Rp is the particle radius. 

Finally, in the differential operator form of the unknowns, the following relations are 

derived. 

dfl r~' [18] 

dTp 
dfl = Y2, [19] 

de 
d--fl = Y3, [20] 

where, 

d v g  • dfl = { y42 yv  Y s  Y I °  - Y4(Yg+ Ys Ys)}I Yu. 

d--~T = { Y4 YIo( Y6 Y9- YT)+ (Ys-  Y9)}/ Y,I. 
dfl 

= {Y4Y6(YsYs+ Yg)- Y4YT(1 + Ys)}/Y~,. 
dfl 

[21] 

I221 

[231 

3 C°-~ lv - vo] (-V-~U-Ye~, [24a] 
Yt=8R---~pp ,, vp / 

y2= ~-R-~. N" kg ( f ~ p T  )-F~ht~/(poCpVo) , [24b] 

( Y3 = 1 -___~ Yr + [24c] 
vo R. ] '  

v~p~_ [24d1 g . =  p. 

1 [-3(1 - e) ~ rb - vgY3], [24e1 
Y5 = ~ [ Rp pp 

Y6 = ~pgVg, [24f1 

Y7 = 3 ~ (1 - E)(vp - v~) - (1 - e)ppvpYi, [24g] R. 

Cvg [24h] 
Y8 = 5~ ' 

Y9 = - [(1 - ~ ) Y ~ + ( v x -  v .)Ys]-  p~ 

+ \---~--} RpPg [(v~ - vo)vg + (e. o - e~o)], [24i] 

= pT~, [24j] YJo 

Fit  = y 4 2 y 6 Y s Y t o  - ]I4(1 + )I8)- [24k] 

The six ordinary differential equations [18]-[23] plus the algebraic equation of state [51 
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completes the system of seven equations in seven unknowns describing the detailed structure 
of a steady state chemically reacting particle-laden shock wave. A brief discussion of the 
method of solution to the above system of equations is presented below. 

Numerical integration scheme 
Numerical integration of the set of first order, coupled, ordinary differential equations 

[18]-[23], is performed per one step of length, H, using a routine called DIFSUB developed by 
Gear (1971). The interval H may be specified by the user, but features an automatic step size 
selection, which allows the integrator to take the longest step possible, while satisfying the 
prescribed error criterion. Either an Adams method or methods suitable for stiff equations can 
be selected. The starting procedure is automatic and the information retained by DIFSUB about 
previous steps is stored in such a way to make interpolation to a non-mesh point straightfor- 

ward. 

Boundary conditions 
For this initial value problem the boundary conditions specified at the equilibrium (cold) end 

are simply, 

P=Po; Tp= Tg= To; Vv= Vg= Vo. [25] 

The state equation gives P~o. The solid density, Ppo remains an assumed constant. For weak 
(diffusive) shocks, the solution to [18]-[23] are solved using the conditions specified in relations 
[25]; although some perturbation in either velocity or temperature is required to start the 
problem. 

For the strong shock (Mo =- Vo/Ao > 1) the gas is shocked to a greater temperature, Tgt, a 
higher pressure, P~, and a lower velocity, V~. Rudinger (1%9) has presented the relations for 
P~,IPo, T~,lVo, as well as Me,lMo. These relations depend only upon M0 and y~ the gas phase 
specific heat ratio. Here, A0 is the speed of sound of the gas. Thus specification of the conditions 
[25] immediately determine conditions across the normal shock. These conditions are then the 
initial values required to begin integration. 

The equations are integrated until total relaxation of velocity and temperature has been 
completed. Appendix A presents the "jump" conservation relation which determines those hot 
end conditions, namely, T~ = T~, P = P~, V~ = V~. Of course we assume that e--* I since Rp ~ 0  
at burnout. 

Additional functional inputs 
(a) Particle radius. The particle radius can be calculated from the "Number Density" or 

simply from the known variation of e For steady flow it is easy to show that 

where: 

= 

Rpo kW,,,/ ' [26] 

Wp = ppAp Up, [27a] 

Wvo = ppoApo Up,,. [28a] 

where A,, represents the cross sectional area for the particle flow. 
But, 

= pp(1 - e )Up,  [27b]  
A 
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~ " = pp,,(l - eo)Up,. [28b] 

where A represents the total flow area. 
Assuming that solid phase density is constant, by appropriate substitutions one can then show 
that 

Rp = Rp,, ( I - E Ur ) ~13 
1 - ~,, Up, ,  [29] 

(c) Burning rate. The usual pressure-dominant propellant burning was assumed to be 

rb = a(TflT~,,). P" [30] 

where the parameters a and n are assumed known constants. 
(c) Interaction coe~fcients. A simple momentum balance, when assuming that the solids 

volume fraction is negligible gives 

-( dp- ~ DeUPDt = 37r#gdp(U~ - Up)=-Stoke 'sdraglaw.  [31] 

In general, Stoke's drag is only accurate if the particle velocity with respect to the gas 
velocity is small. Thus the R.H.S. of [31] should be replaced by definition of drag. In terms of a 

drag-coefficient, 

DeUe=3 CD ,P-~IU~ - U.I(U~ - Up). [32] 
Dt 4 appp 

Since the particle Reynolds number may not be small and hence the Stoke's drag regime 
would not apply, a more satisfactory drag coefficient was chosen. A "standard" drag coefficient, 

given by Rudinger (1969) was assumed to be, 

where the Reynold's number. 

28 
Co = 0 48 + --=-- 85, [33a] 

• (Rep). 

R~, = P~dFIUg - UÈI~ [33b] 

The non-dimensional heat-transfer coefficient, i.e. the Nusselt number was assumed to be of 

the form 

Nu = 2 + 0.6Prl/3Rep 112 [34] 

where, Pr = Prandtl number of the gas = (txgCp~)/k~. Rudinger (1964) has studied the effects of 
various forms of Co and N, as they alter the velocity and temperature variations in the 

relaxation zone. 
(d) Propellant ignition criterion. As discussed in the list of assumptions, having assumed 

that the particles are always at an average uniform temperature, the ignition criterion must 
simply state that a critical temperature must be reached, at which point the total surface begins 
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to burn at the rate given by [30]. This ignition temperature rise is typically 10°C to 20°C. Such 

relatively low temperature increases reflect the use of a bulk solid temperature to represent 

ignition conditions. This ignition criterion is given support by the work of Derr & Fleming 

(1973) who showed a strong correlation of a critical temperature and burn rate. 

If one assumes instead that there are significant temperature gradients in the solid, as Kuo & 

Summerfield (1974, 1975) have done, then ignition will begin only if a s u r f a c e  temperature 

exceeds a critical value, usually much larger than the bulk ignition temperature. But to use a 

propellant surface temperature requires solving the unsteady heat conduction for the particles 

at every location. This additional equation then replaces the solid particle energy balance, 

[17], an approach which is unacceptable to us, mainly because the mixture energy equation in 

the form given in [4] or [5] must be satisfied as presented. 

Typical input parameters and other properties of the gas and solid are given in table 1. 

Table 1. Typical input parameters 

Equilibrium conditions at the cold end 
At,, =2.s 

P,, = 1 latin] = 1.013 nts/m 2) 
T o = 295 [K ]  
~,, = 0.95 

d,o = 150 [~m] 

Thermodynamic gas properties 
k~ = 2.5 x 10 -2 [W/m K], 

C,. = 7.18 x 10: [J/kg K], 
Cp = 1.00x 103 [J/kg K], 

Propellant properties 
pp = 1441 [kg/m3], 
E s = 1.86 [MJ/kg], 

P,~o = 1.059 [kg/m 3] 

/~x = 2.00 x 10 -5 [kg/m sec] 
ye = 1.4 

M W  = 26 [g/g-mole] 

A Ti~ . = 10°C 
n = 0.9 

,--6 [cm/sec] a =0.94x jo 

3. RESULTS 

The structure of the relaxation zone for moderate size solid propellant particles which can 

burn is presented in figures 2-4, for a propellant assumed to have an energy content of 

2.09 MJ/kg and requiring a heat of sublimation at pyrolysis of 0.116 MJ/kg. The initial gas void 

fraction is ~o = 0.95 giving rap,, -- 72. All other properties are listed in table 1. Here 

i351 rap,, W~ o = ~oPgo 

4 v .  3.~ 
A° 

dp : 50 ~rn 
E t = 2 . O 9 x l O  s J / k g  
Mo=2.5 
Hfg=l.16 x 105 J / k g  

Ti~ln= ~ 3 5 ° K 

~ 7 

3 65,s~. ® 

5 6.77 I0 15 20 25 30 35 40 45 
Bign 

/9 (ram) 

Figure 2. Predic t ions o f  the veloci t ies and temperatures behind a strong shock wave o f  (react ive) solid 
propel lant  part ic les (d~ = 50 ,u,m: M,, = 2.5). 
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dp = 50,u.m 
GAS DENSITY AND PRESSURE Ee= 2 . 0 9  x I06 d/kg 
PROFILES M.=25 

Hfg=l.16 x I05 J / k g  500 
_zl 
~{ ~ T,,,= 335 o K 

4oo | ,  / ~ eo 

g [ ~o .300 / /  

.oo /V 

,oo ,1 ( =::.:=,n,.o::::.:::::::.:-- ) 
' I I i I I I i 

0 56 ;  77 'O 15 20 25 30 35 40 450 
'lgn 

B ( m m )  

Figure 3. Predictions of the gas density and pressure variation behind a strong shock wave of (reactive) 
solid propellant particles (dp = 50 ~m; lifo = 2.5). 

dp:50/.t.rn PARTICLE DIAMETER AND 
E f = 2 " O g x l O 6 J / k g  VOID FRACTION VARIATION 
M.=2.5 
HfQ=I.16XIO 5 J/k(] BEHIND A STRONG SHOCK 

Tia# 335 ° K 

, 2 0  ~ - - - I 0  

.15 95 

-- .IO 90 
x 
.v 

.05 85 

.8D 

~(mm} 

Figure 4. Predictions of the solid propellant size (diameter) and void fraction, (, behind a strong shock 
wave (d. = 50~m: lifo = 2.5). 

Thus, for every gram of air in the mixture, one has 72 g of propellant, which takes up only 5% 

of the volume. 
The velocities are normalized with the sound speed of the (cold) equilibrium mixture, Ao. 

The shock of Mo = 2.5 reduces the gas velocity to 0.30 of its initial value, i.e. V~,I V~o = 0.30 and 
the subsonic Mach number is M~ = 0.513. Therefore, the initial value of figure 2, for V~,/Ao at 

/3 = 0 is given by, 

Vg,/Ao = M ,  . ( A , / A o )  = M,  . ~ / (T~ /To ) .  [36] 

Since, for y = 1.4, Tgl/To = 2.1375, then by [36], Vg,/Ao = 0.750, as shown. 
As figure 2 shows, the relaxation zone structure includes a short region, before ignition, in 

which the velocities and temperatures vary as they would for an inert mixture. At /3 = Zcw 
(combustion wave) of 6.77 mm the particles have raised their temperature by at least 10 K and 
begin to burn. The gas temperature immediately increases because of the hot combustion 
products to a peak value of TglTo = 6.78, eventually relaxing to a value of 5.95. Because of the 
mass source term the gas velocity eventually begins to increase. At the end of the relaxation 
zone Vg®/Ao = 3.66 which satisfies the end "jump" condition. The relaxation zone thickness will 

be determined by the particle burnout location, shown in figure 4. The key result is, of course, 
O 
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that, because of combustion the total relaxation zone is typically an order of magnitude shorter 

than for an inert mixture under the same condition. 
The gas pressure and density variation are shown in figure 3. Notice that the pressure has 

peaked, at/3 = 16 ram, to 462 atm; at the end of the relaxation zone the pressure is still a high 
value of 279 atm. 

Variations of void fraction and particle diameter are shown in figure 4. Notice first the 
compaction of the solids, reaching a minimum gas void fraction of ~ = 0.827 at the location 
where the pressure peaked (/3 = 16 mm). The particles begin to decrease in size when/3 > Zcw 
(6.77 ram). 

As the particles get smaller and smaller the "characteristic" relaxation times for particle 
velocity and temperature reduce as the square of the particle diameter. Hence there is a rapid 
adjustment of the particle velocity and temperature to equilibrate to the gas values within 
distances that become even smaller. The integration scheme utilized could not keep up with this 
accelerating relaxation adjustment, and numerical instability usually set in when the particles 
reached 1/4 of their original diameter. Obviously the code needs to be optimized for such 
conditions, and this effort is planned for future work. 

Figure 5 presents a comparison of the pressure profiles in the relaxation zone for two cases, 
one with moderate-sized particles having a typical value of the energy content, and the other 
with large diameter particles having a low energy content. As expected, the ignition zone is 
much shorter with the smaller particle size. Interestingly enough the less energetic propellant of 
the larger diameter particles showed a larger peak pressure, i.e. (PJPo)~ak = 520. One must also 
remember that in this comparison the'solids volume fraction was equal, at 5%. And after 
ignition the combustion source term for the smaller 50/zm particles is actually three times 
greater than for the larger 150 tzm size, at a same pressure condition. In conclusion, the total 
structure of the relaxation zone must have a significant effect on the eventual peak pressure, 
because from just an analysis of the combustion rate one cannot explain the differences in the 
predicted peak pressures for the two cases shown in figure 5. 

Nevertheless, for a propellant of fixed energy content, the predicted peak pressure in- 
creases, as expected, as the particle diameter decreases. This is shown in figure 6 for the two 
shock strengths, Mo =3.5 and 2.5. (The values of the maximum pressure are given the 
thousands-of-psi.) Notice for the nominal shock strength of Mo = 2.5 the predicted peak gas 
pressure is fairly insensitive to particle size for dp > 120/~m. 

Of course the shock strength, as measured by the initial Mach number, M,,, has a 
pronounced effect on the gas pressure in the relaxation zone. Notice that (Px/P,,)m~ is predicted 
to be 1700atm for Mo = 4.5, as shown in figure 7. 

60C PREDICTED PRESSURE PROFILES BEHIND A STRONG SHOCK 

Ef= 2 ,09 x I0 s 
500 dp:50 ~ M*=2"5 5 +oo / \ +,.,+,,o 
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0 6 . r r  2 0 2 5 . 0 7  i ~ t • I i '  I ~ ( 
40 6o so +o0 +zO I+o ~o mo 
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Figure 5, Predictions of the pressure distribution behind a strong shock wave for two propellants of 
different energy content  (d.  = 50/~m; M,, = 2.5). 
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PEAK PRESSURE IN RELAXATION ZONE 
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Figure 6. Peak pressure in the shock relaxation zone (for twq different shock strengths) as a function .of 
particle diameter. 

Figure 7. Predicted peak pressures in the relaxation zone as a function of the shock Mach number 
(dp= 100/zm; E t = 2,32 x 106 J/kg (103 B.t.u./Ibm)). 

The relaxation zone lengths, and especially the ignition-lag distance, Zcw, are of course 
strongly dependent upon the particle size, as well as the shock strength. Figure 8 presents the 
results of the predicted ignition-lag zone as a function of dp for two shock strengths. Notice, 
however, that the energy content is different for the two lines shown in figure 8. 

Likewise the total relaxation zone, which here must be determined in an approximate 
manner by extrapolating to the distance of zero particle size, is also a strong function of the 
particle diameter. Figure 9 presents these results, again for two shock strengths, 

PREDICTED IGNITION LAG DISTANCE AS 
40 A FUNCTION OF PARTICLE SIZE 
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Figure 8. Predicted ignition lag distance, Zcw, as a function of particle size for different shock strength and 
propellant energy content. 
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APPROXIMATE RELAXATION THICKNESS 
AS A FUNCTION OF PARTICLE SIZE 
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Figure 9. Approximate relaxation zone thickness, ZRZ, as a function of particle size for two different shock 
strength and propellant energy content. 

Several cases were studied for a "weak'" shock relaxation zone condition, but because the 
gas temperature is not shocked to a higher value, propellant ignition is generally never 
predicted. Recall we assumed that the particles temperature must be raised by at least 10°C to 
ignite. Although the particles do heat up in a "weak" shock case, for the large mass solids 
loadings considered of interest here, this increase of 10 ° never occurred. 

In order to complete the work, a case was calculated for a propellant with an assumed low 
ignition temperature, namely I°C above ambient. Figure 10 shows the results. Here, Mo = 0.90 
and dp= 100 tzm. Eventually (after 236 mm) the particle temperature reached 296 K and burning 
commenced. The peak pressure ratio (not shown) was predicted to be only 14.5 atm (213 psi), 
although the gas temperature ratio peaked at 4.63, as shown. 

A result of the type shown in figure 10 explains why the work of Kuo & Summerfield (1974, 
1975), which analyzed only "weak" shocks, required an internal ignition source to raise the 
particle temperatures as the long ignition-lag zone developed. 

PROFILES BEHIND A WEAK SHOCK WAVE 
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Figure 10. Predictions of the temperatures and velocities behind a "weak" shock of (reactive) propellant 
particles (dp= 100/zm; M o = 0.90). 
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APPENDIX A 

JUMP CONDITIONS:  EQUILIBRIUM VALUES AT THE END 

OF THE RELAXATION ZONE 

The transformed, steady form of principle of conservation equations ([12]-[17]) can be 
integrated to give the final equilibrium properties. The Boundary Conditions discussed in the 
text are used as the limits of integration. By neglecting shear forces, one can easily show, for 
mixture continuity: 

ft t~)* d{~pgvg} + ft ~* d{(1 - e)ppvp} = 0 [A1] 
o):t o) 

mixture momentum: 

f to~d{~p~vg2+(1-e)ppvp2}=-fcto~'d{Pg} [A21 

t(~) conditions at the hot end (final equilibrium). 
~t(o) conditions at the cold end (upstream of shock). 
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mixture energy: 

performing [AI] 

simplifying: 

f( f(~)dP~[~v~ +( l  ~)Vp] (®) d{epv~ego + (1 - e)ppvpepo } = .~o~ 
o) 

~(®)pe~®, vg - ~(o)Pe~o~ ve~o, + (1 - e(.))pp~®~ vo~®~ - (1 - ~o))Po~o, Vp~o, = 0 

[a3] 

[A41 

Hence: 

1 2 (e,,,) = C~ T~ +~ v~ , [A91 

(epo) = CpTp +~ vp2 + e~. [AI0] 

1 
(ego)(o ~ = C~To +2 V°~' [All]  

1 
(e~,,)(®~ = Co T~+~ V~ 2, [A12] 

1 
(epo)(o) = CpTo +~ Vo2 + e¢, [A13] 

1 
(e~o)¢®) = CpT® + ~ V® ~. [AI41 

Simplifying [A8]: 

p® V®(ego)(~) + P® V~ = eOPgo Vo(ego)¢o) + (1 - eo)pp Vo(evo),O) + Po Vo. [A15] 

The three integrated conservation equations contain four unknowns. Thus one should 
combine these equations with the equation of state for the gas 

P®(p®-~ - b) = ~t~T~ [A16] 

to complete the set of four algebraic equations in four unknowns (final equilibrium properties of 
gas-particle mixture); p®, P=, and T®. 

Defining 

Likewise for mixture momentum equation [A2]: 

2 2 2 + ~(®~p~®~v~(®~- ~.(o)pg~o~Vg~o~ + (1 - ~(®~)pp(®~vp~®~- (1 - ~o))pp~ojVp~o~ = -P(®) P(o~. [A6] 

Simplifying: 

P~ V® 2 + P® = eO#go Vo 2 + (1 - eo )pp Vo 2 + Po. [A7] 

Finally the mixture energy equation [A3] becomes 


